
Math 2050, note on lim-sup

1. Bolzano-Weiestrass Theorem

By boundedness Theorem, a convergent sequence must be bounded.
It turns out to be almost equivalent statement!

Theorem 1.1 (Bolzano-Weiestrass Theorem). Suppose {xn}∞n=1 is a
bounded sequence, then it admits a convergent sub-sequence.

As a application,

Corollary 1.1. If {xn}∞n=1 is bounded such that all convergent subse-
quence has the same limit, then {xn}∞n=1 is convergent with the same
limt.

2. Limit Superior and Limit Inferior

remark: I am not following the approach in textbook.
Recall that we only concern the behaviour when n → +∞. The

convergence is equivalent to say that xn is stabilized somewhere. To
capture the ”stability”, it is often useful to consider the Oscillation of
the tails.

Definition 2.1. Given a bounded sequence {xn}∞n=1. Define

(1)

lim sup
n→+∞

xn = inf
k∈N

sup
n≥k

xn = lim
k→+∞

sup
n≥k

xn;

(2)

lim inf
n→+∞

xn = sup
k∈N

inf
n≥k

xn = lim
k→+∞

inf
n≥k

xn.

Here the limits Always exist by monotone convergence theorem. (1)
capture the ”max” of tail while (2) capture the ”min”.

We have the equivalent form of definition (also equivalent to the one
from the textbook).

Theorem 2.1. Given a bounded sequence {xn}∞n=1, the followings are
equivalent.

(1) x = lim supn→+∞ xn;
(2) For ε > 0, there are at most finitely many n such that x+ε < xn

but infinity many n so that x− ε < xn;
(3) x = inf V where V = {v ∈ R : v < xn for at most finitely manyn};
(4) x = supS where S = {s ∈ R : s = limk→+∞ xnk

for some {nk}∞k=1}.
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Proof. (1)⇒ (2):
For all ε > 0, there is k0 ∈ N such that for all m ≥ k > k0,

x + ε > sup
n≥k

xn ≥ xm.

Hence,
|{i : xi ≥ x + ε}| < +∞

Moreover, x− ε < supn≥k xn for all k ∈ N. Therefore, for each k ∈ N,
there is nk ≥ k such that x− ε < xnk

. Since k → +∞,

|{i : xi > x− ε}| = +∞.

(2)⇒ (3):
By (2), x + ε ∈ V and hence x + ε ≥ inf V for all ε > 0. By letting

ε→ 0, we have
x ≥ inf V.

Suppose x > inf V , there is ε0 > 0 and v ∈ V such that

x− ε0 > v.

By (2) again, there are infinitely many xn so that

xn > x− ε0 > v

which contradicts with v ∈ V . Hence x = inf V .

(3)⇒ (4): We claim something slightly stronger: inf V = supS.
Let v ∈ V , since there are at most finitely many xn such that v < xn.

There is N ∈ N such that for all n > N , v ≥ xn. Let s ∈ S, there is nk

such that xnk
→ s. Applying the properties of v on xnk

, we have for
all k > N ,v ≥ xnk

. Hence,
v ≥ s.

The inequality is true for all s ∈ S, v ∈ V . Hence, inf V ≥ supS.
We now claim that inf V = supS. If not, there is ε0 > 0 such that

a = inf V − ε0 > supS.

There is N ∈ N such that for all n > N , a ≥ xn. Since otherwise, we
can find a subsequence xnk

such that a < xnk
for all k. By Bolzano-

Weiestrass Theorem, there is xnkj
which converges to some s ∈ S as

j → +∞ so that a ≤ s ≤ supS which is impossible. Therefore,

|{n : a < xn}| < +∞
which implies a ∈ V and hence a ≥ inf V = a + ε0. This is impossible.

(4)⇒ (1):
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Let s ∈ S, there is xnk
→ s. On the other hand, for all k ∈ N,

sup
n≥k

xn ≥ xnk
.

By passing k → +∞, we have lim supn→+∞ xn ≥ s and hence

lim sup
n→+∞

xn ≥ supS.

Denote x̄ = lim supn→+∞ xn. To show the opposite inequality, let
ε > 0, we have for all k ∈ N,

x̄− ε < sup
n≥k

xn.

Therefore, for all k ∈ N, there is xnk
such that x̄ − ε < xnk

. Using
the construction of sub-sequence in previous lecture, we might assume
{xnk
} forms a sub-sequence. By Bolzano-Weiestrass Theorem, there is

xnkj
→ s for some s ∈ S as j → +∞. This shows

x̄− ε ≤ s ≤ supS, ∀ε > 0.

By letting ε→ 0, we have

x̄ ≤ supS.

This completes the proof. �

The importance of lim sup and lim inf is that they always exist (with-
out checking anything!!!!).

Theorem 2.2. Given a bounded sequence {xn}, it is convergent if and
only if

lim sup
n→+∞

xn = lim inf
n→+∞

xn.

Proof. Suppose the sequence is convergent: xn → x for some x ∈ R.
For all ε > 0, there is N ∈ N such that

|xn − x| < e.

And hence,for all k > N ,

x− ε ≤ inf
n≥k

xn ≤ sup
n≥k

xn ≤ x + ε.

Let k → +∞ and followed by ε→ 0, we have

x ≤ lim inf
n→+∞

xn ≤ lim sup
n→+∞

xn ≤ x.

To prove the opposite direction, let x be the common limit. Then
for all ε > 0, there is N ∈ N such that for all k > N ,

sup
n≥k

xn < x + ε, inf
n≥k

xn > x− ε,
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which shows that for all n > N ,

x− ε < xn < x + ε.

This completes the proof.
�


